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ABSTRACT 

This paper presents a method for combining seismic and electromagnetic 

measurements to predict changes in water saturation, pressure, and CO2 gas/oil ratio in a 

reservoir undergoing CO2 flood.  Crosswell seismic and electromagnetic data sets taken 

before and during CO2 flooding of an oil reservoir are inverted to produce crosswell 

images of the change in compressional velocity, shear velocity, and electrical 

conductivity during a CO2 injection pilot study.  A rock properties model is developed 

using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic 

velocity, and electrical conductivity. The parameters of the rock properties model are 

found by an L1-norm simplex minimization of predicted and observed differences in 

compressional velocity and density.  A separate minimization, using Archie’s law, 

provides parameters for modeling the relations between water saturation, porosity, and 

the electrical conductivity.  The rock-properties model is used to generate relationships 

between changes in geophysical parameters and changes in reservoir parameters.  

Electrical conductivity changes are directly mapped to changes in water saturation;  

estimated changes in water saturation are used along with the observed changes in shear 

wave velocity to predict changes in reservoir pressure.  The estimation of the spatial 

extent and amount of CO2 relies on first removing the effects of the water saturation and 

pressure changes from the observed compressional velocity changes, producing a residual 

compressional velocity change.  This velocity change is then interpreted in terms of 

increases in the CO2 /oil ratio.  Resulting images of the CO2/oil ratio show CO2-rich 

zones that are well correlated to the location of injection perforations, with the size of 

these zones also correlating to the amount of injected CO2.  The images produced by this 
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process are better correlated to the location and amount of injected CO2 than are any of 

the individual images of change in geophysical parameters. 

 

INTRODUCTION 

Crosswell seismic and electromagnetic technology has developed over the past two 

decades to provide high spatial resolution images of the seismic velocities (P and S) and 

electrical conductivity of the interwell region.  The majority of effort, as measured by the 

topics of published and presented work, has concentrated on developing and improving 

algorithms for estimating the geophysical parameters themselves (Newman, 1995; 

Lazaratos et al., 1995; Wilt et al., 1995; Nemeth et al., 1997; Goudswaard et al. 1998 to 

list but a few).  In most applications where nongeophysical parameters, such as 

temperature during a steam flood (Lee et al., 1995) or CO2 saturations during CO2 flood 

(Harris et al., 1995; Wang et al., 1998) are the object of the crosswell survey, correlations 

between the geophysical parameters, e.g., velocity or electrical conductivity, and the 

desired reservoir parameter are derived and used to infer the distribution of reservoir 

parameters from the distribution of the geophysical parameters.  The output from the 

survey is still most commonly a cross section of velocity, electrical conductivity or the 

time-lapse change of these parameters, which is then interpreted in terms of its 

implications for the distribution and/or change of the parameter of interest (temperature, 

CO2 saturation, etc.).   

 

The simple extension of interpreting the geophysical parameters themselves is to use 

relationships between geophysical and reservoir parameters (e.g., a regression fit between 
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velocity and temperature) to convert a geophysical parameter to a reservoir parameter 

image.  This approach can be used successfully in relatively simple reservoir systems 

with a minimum of fluid components and/or spatial variations in other controlling 

parameters (such as porosity, pressure, and temperature).  However, in many settings the 

geophysical parameters depend on a number of reservoir parameters that are variable in 

both space and time.  In particular, porosity, pressure, water, and gas saturation strongly 

influence seismic velocity.  Electrical conductivity can generally be described as a 

function of porosity, water saturation, and fluid conductivity (Archie, 1942), although 

clay content may also need to be considered.  As we will show, in a complex reservoir 

fluid system, the spatial distribution of the time-lapse change in geophysical parameters, 

such as velocity, can vary significantly from the spatial distribution of the time-lapse 

change in a desired reservoir parameter, such as CO2 saturation in oil.  This difference 

results from the dependence of the geophysical parameters on more than one reservoir 

parameter (such as pressure and water saturation).  These multiple dependencies must be 

sorted out before a picture of any single reservoir parameter can be obtained.  

 

It has become common practice to use time-lapse changes in compressional and shear 

impedance mapped at the top of a reservoir.  These changes are used to calculate time-

lapse changes in effective pressure and water saturation within a reservoir without 

significant gas saturation (Landro, 2001).  However, in systems where natural gas is 

present in significant concentrations or where gas in the form of CO2 is introduced, 

quantitative prediction of pressure and fluid saturation changes becomes problematic 

because of trade-offs in the effects of the multiple reservoir parameters on the mapped 
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geophysical parameters.  The situation is further complicated if the objective is to 

monitor CO2 injection into a reservoir already containing natural gas (in addition to oil 

and water). 

 

The objective of the work described in this paper is to demonstrate a methodology of 

combining time-lapse changes in electric conductivity and compressional- and shear-

wave velocity with a detailed rock-properties model, to produce quantitative estimates of 

the change in reservoir pressure, water saturation, and CO2/oil ratio.  

 

THE FIELD EXPERIMENT 

Crosswell seismic tomography and electromagnetic imaging have been demonstrated 

in separate applications over the last decade.  The SEG special issue ‘Crosswell Methods’ 

(Rector, 1995) contains several papers on the application of crosswell seismic 

tomography specifically for thermal process monitoring and several others on crosswell 

EM monitoring of water floods.  Wilt et al. (1995) report on the application of crosswell 

EM in water flood monitoring.   

 

In the fall of 2000 and spring of 2001 we conducted crosswell seismic and 

electromagnetic (EM) measurements in the Lost Hills oil field in southern California 

during a CO2 injection pilot study by Chevron Petroleum Co.  The objective of the pilot 

study was to demonstrate enhanced oil recovery resulting from CO2 injection.  We used 

this opportunity to study geophysical imaging of the reservoir during CO2 injection.   
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The portion of the Lost Hills field where this experiment took place has been 

undergoing water flood since 1995.  The CO2 pilot covers four injection wells and 

surrounding producers.  Figure 1 shows the well placement in the affected portion of the 

field.  Observation wells, OB-C1 and OB-C2, were drilled for the pilot and were 

fiberglass-cased to enable the use of crosswell EM.  The nearby CO2 injector (11-8WR) 

is located 20 feet out of the crosswell-imaging plane.  These injection wells were 

hydraulically fractured to increase injectivity into the low-permeability diatomite 

reservoir.  In some cases, downhole pressures were increased above the lithostatic 

pressure, which may have induced fracturing above the desired injection interval.  If the 

fracture did indeed extend above the desired interval, much of the injected CO2 would 

likely not sweep its intended target, but rather move into the higher section. 

 

The baseline crosswell seismic and EM surveys were conducted in September 2000, 

just prior to the beginning of CO2 injection.  A second EM survey was conducted in mid 

April 2001, and a second seismic survey was conducted in May 2001.  In addition to the 

crosswell surveys, the two observation wells OB-C1 and OB-C2 were relogged for 

electrical resistivity in January 2001. 

 

A ROCK-PROPERTIES MODEL 

The reservoir parameters that have a dominant affect on geophysical parameters are 

porosity, pore pressure, effective pressure (lithostatic-pressure minus pore-pressure), 

fluid saturation, and the amount of dissolved hydrocarbon gas or CO2 in oil.  Pressure has 

a significant effect at Lost Hills because it is a shallow reservoir in soft rock.  Converting 
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geophysical images of the interwell region to reservoir parameters requires a rock-

properties model relating the geophysical parameters to the reservoir parameters.  We 

sought a model that would be able to predict observed velocity, density and electrical 

conductivity from observed pressure, porosity, and fluid saturations.  Table 1 gives all the 

symbol definitions used in this paper.  Laboratory measurements of the dry-frame moduli 

and grain density of the diatomite reservoir rock were unavailable, so to compute the 

seismic velocity we used the Hertz-Mindlin contact theory for the effective bulk ( ) 

and shear (G ) moduli of a dry, dense, random pack of spherical grains given by the 

following expressions: 
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where φ0 is the critical porosity (the porosity above which the grains become a liquid 

suspension), Peff is the effective pressure, ν is the grain Poisson’s ratio, Ggrain is the grain 

shear modulus and l is the average number of other grains each grain contacts.  Equations 

(1) and (2) describe the effective dry-frame moduli at the critical porosity 0φ .  The 

modified Hashin-Shtrikman lower bounds (Hashin and Shtrikman, 1963) given by 

Dvorkin and Nur (1996), 
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are used to model the dry frame moduli ( and ) at porosity effK effG φ , where Kgrain is the 

grain bulk modulus. 

 

The bulk modulus of the fluid saturated rock ( ) is modeled by Gassmann's 

equation (Gassmann, 1951) : 
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where  is the aggregate bulk modulus of the fluids filling the pore space.   The bulk 

shear modulus of the fluid saturated rock is assumed to equal that of the dry rock. 

fluidK
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The possible fluids filling the pore space are oil, brine, hydrocarbon gas, and CO2.  A 

common approach for calculating  is to use Wood’s mixing formula (Wood, 1955): fluidK

 

2 21/ / / / /fluid w brine oil oil hcg hcg co coK S K S K S K S K= + + +  , (6) 

 

where the water saturation ( ), oil saturation ( ), hydrocarbon gas saturation ( ) 

and CO

wS oilS hcgS

2 saturation ( ) sum to 1.0. The bulk moduli of brine, oil, hydrocarbon gas, 

and CO

2coS

2 are Kbrine, Koil, Khcg, and KCO2, respectively. We will discuss this method of 

calculating  at the end of this section.    fluidK

 

The bulk density is given by a simple mixing law 
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where grainρ , oilρ , brineρ , hcgρ , and 
02C

ρ  are the grain, oil, brine, hydrocarbon gas, and 

CO2 densities, respectively, as a function of pressure and temperature. 

 

The fluid bulk moduli  and densities, ,brine oil hcgK K K brineρ , oilρ , hcgρ  of the brine, 

oil, and hydrocarbon gas respectively are computed using relations from Betzel and 

Wang (1992).   The bulk modulus and density of CO2, 
2COK and

2COρ , respectively, as 
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well as the bulk moduli and densities of CO2-hydrocarbon gas mixtures, are modeled 

using relations from Magee and Howley (1994). 

 

The bulk electrical conductivity ( bulkσ ) of the reservoir rock is modeled using 

Archie’s (1942) relationship  

n
w

m
brinebulk S⋅⋅= φσσ  ,     (8) 

where brineσ  is the fluid conductivity, and m and n are numbers usually between 1 and 3. 

 

The model parameters in Equations (1) through (7) were found by using a simplex 

algorithm to minimize L1 given by Equation (9). 

 

( ) (1
1 1

N N
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p pL V V ρ ρ= − + −∑ ∑ ) ,   (9) 

 

where  are the sonic log compressional velocity, model 

calculated sonic compressional velocity, log density, and model calculated density, 

respectively.  The units used in defining L

, , ,obs calc obs calc
p pV V andρ ρ

1 were m/s and Kg/m3, so that the velocity and 

density had approximately equal numerical magnitude, and hence equal weight in the 

value of L1.  Because the observation wells used in the crosswell surveys did not have 

full logging suites (no sonic logs), the nearest well (1,000 ft away) with a full suite of 

logs was used. Electrical parameters in Equation (8) were determined by a regression 

using the OB-C1 σ, φ , and Sw logs.  Predicted Vp, ρ, and 1/σ compared to the observed 
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logs are shown in Figure 2, with the model parameters determined from the regressions 

listed in Table 2.  

 

Figure 2.  Rock properties model uses logged porosity (black), water saturation (green) 

and gas saturation (light blue) as inputs in a multi-parameter regression to predict the 

velocity (left panel), density (second from left panel) and electrical resistivity (right 

panel). Measured velocity, density, and resistivity are shown in blue; model predicted 

values are shown in red. 

 

Parameters listed in bold type in Table 2 (critical porosity, oil API gravity, brine 

salinity, and temperature) were held fixed in the regression.  These values, with the 

exception of critical porosity, came rom dir ct measurement.  Although we are not 
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interested in the model parameters per se (we are only interested in the model’s ability to 

predict Vp, Vs, and ρ, given reservoir parameters), note that their values are quite 

realistic.  The gas density G is very close to that of methane.  Estimated shear modulus 

and grain density of the diatomite grains is very close to the values of 18 (GPa) and 2.3 

(g/cc) estimated by Wang (2001).   Bilodeau (1995) measured an average grain density of 

2.37 g/cc from another location in the diatomite at Lost Hills; he also measured -1.84, -

1.95, and 0.21 (S/m) for Archie’s Law porosity exponent, saturation exponent and fluid 

conductivity, respectively, on the same samples.  A value of critical porosity was 

determined by a set of minimizations of Equation (9) where φ0 was varied between 0.5 

and 0.7, all of which reached essentially the same value of L1.   The value of φ0 was 

chosen that resulted in values of Ggrain and ρgrain that were closes to those estimated by 

Wang (2001).   

 

In Table 1, only one parameter, “gas correction”, is listed under the Gassmann fluid 

substitution column.  In addition, the Gassmann formula uses the dry-frame modulus as 

well as the fluid bulk moduli derived from the Batzle and Wang (1992) relations.  

However, we found that to fit the observed velocity in areas where the gas saturation was 

non-zero, the gas effect had to be reduced.  The overestimation of the gas effect on fluid 

bulk modulus by the Wood’s mixing law, Equation (6), has been observed by Brie et al. 

(1995).  A better match between predicted and observed velocity could be achieved by a 

simple correction to the gas term in Equation (6), yielding a modified equation 
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where G  is the gas correction listed in Table 1. c

 

The pressure prediction capability of the model was validated by comparison to 

measurements made by Wang (2001) on core samples of diatomite from Lost Hills.  

Figure 3 shows the measured compressional velocity for vertical and horizontal 

propagation.  These measurements show a horizontal-to-vertical velocity anisotropy of 

1.047 that varies slightly as a function of pressure.  We will come back to the velocity 

anisotropy when we consider the velocity inversion of the crosswell 

data.
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Figure 3 Vertical and horizontal compressional velocity as a function of effective 

pressure measured on Lost Hills Diatomite core by Wang (2001).  Core was saturated 

with 19 API oil and 200,000 ppm brine (50-50 ratio) at 22.7 C. 
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Figure 4. Predicted velocity change as a function of change in effective pressure 

compared to laboratory measurements on Lost Hills diatomite core samples. 

 

Figure 4 presents the data from Figure 3 recast as velocity changes as a function of 

pressure changes at a reference pressure of 4.7 MPa, the average effective pressure in the 

reservoir at the start of CO2 injection.  For expected decreases in effective pressure 

(increases in pore pressure) in the range 0 to 3 MPa from the reference pressure, the rock 

properties model predictions are within a few percent of the lab measurements vertical 

velocity.   The rock-properties model is derived from log sonic measurements dominated 

by vertical propagation along the borehole, so the correspondence to the vertical core 

measurements is expected.  For changes in effective pressure above the reference 

pressure, the lab measurements show a change in the slope of the curve, with the quality 

of the fit between model and lab data decreasing.  The difference in this region is 

probably associated with pore crushing in the lab samples not accounted for in the rock-

properties model.   
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The estimates of the time-lapse changes in geophysical parameters derived from 

inversion of the observed geophysical data, as described in the following sections, are 

used with the rock-properties model described by Equations (1)–(5), (7), (8), and (10), 

with constants listed in Table 2, to calculate time-lapse changes in reservoir parameters. 

 

INTEGRATED TIME-LAPSE GEOPHYSICAL IMAGES 

The algorithms, assumptions, starting models, and amount of incorporated a priori 

information all greatly affect the velocity and conductivity models resulting from 

inversion.  Inversions of the individual data sets done separately, without any mechanism 

for linking the models, produces images of Vp, Vs, and σ with little spatial correlation.  

Since we assume that the changes in reservoir parameters affect all of the geophysical 

parameters (albeit in different ways), we expect a certain degree of spatial correlation 

between changes in the different geophysical parameters.  This assumption acts as a 

constraint on the possible solutions.  In this experiment, sonic logs were not run in OB-

C1 or OB-C2, but conductivity logs were run in both wells.  The strategy we adopted to 

maximize the spatial correlation between velocity and conductivity images was to begin 

with the EM data, where the greatest amount of a priori information existed, and then use 

the conductivity image to produce a starting Vp model, followed by producing a starting 

Vs model from the final Vp model.  Conductivity logs were used to build the starting 

conductivity model for the EM inversion.  The EM inversion algorithm is described by 

Newman (1995).  We chose to use the conjugate gradient algorithm of Jackson and 

Tweeton (1996) for the travel-time tomography because the final model is sensitive to the 
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initial model and is perturbed from the starting model only as much as needed to fit the 

observed data.   Both EM and seismic inversions models were parameterized by 3 m 

cells. 

 

 

Figure 5. Time-lapse changes in (a) shear velocity, (b) compressional velocity and (c) 

electrical conductivity.  The EM images were used to construct starting models for the Vp 

inversions; the resulting Vp images were used to construct starting models for the Vs 

inversions.  Major unit boundaries are shown as black sub-horizontal lines, estimated 

location of previous water injection fracture is shown as a vertical blue line, estimated 
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location of the CO2 injection fracture is shown as a vertical green line, perforation 

intervals for CO2 injection are shown as magenta dots, and the mapped location of a 

fault zone is shown as the red diagonal line.  The permeability log in the out-of-plane 

CO2 injection well (11-8WR) is shown in black on panel (c). 

 

EM inversion for the data at initial conditions (late August 2000 before CO2 

injection) was started from a model built by laterally interpolating the conductivity logs 

between the OB-C1 and OB-C2 wells.  The final inversion model from this data was then 

used as the starting model for the inversion of the April 2001 data.  The difference of the 

two inversions provides the time-lapse change in conductivity shown in Figure 5c.  A 

high degree of correlation exists between the permeability log from the injector and the 

areas where the largest decrease in conductivity occurs.  The correlation between high 

permeability and large changes in conductivity (water saturation) is expected.    

 

Next, the conductivity models from the two inversions were converted to 

compressional velocity.  Values of φ, Peff, Ppore, and Shcg, based on averages from the log 

data, were used with regression derived parameters (Table 2) to calculate Vp and σ as a 

function of Sw, using Equations (1)-(5), (7), (8), and (10).   A linear regression between 

the calculated Vp and σ was done to provide a function for converting σ to Vp.  The 

converted σ models were then used as initial models in the inversion of the Vp travel-time 

data to produce the change in Vp shown in Figure 5b.  In addition to a decrease in Vp in 

the region around the estimated locations of the old water and new CO2 injection fracture 

locations, there are decreases in Vp that align with the upper section of the mapped fault, 
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implying that Ppore increases along the upper section of the fault.  Since there are few 

conductivity changes associated with the fault, these results indicate that pressure 

changes occur along the fault zone without significant changes in water saturation at the 

time of the experiment.   

 

The largest σ, Vp, and Vs changes occur in a region bordered by the old water 

injection fracture and the new CO2-injection fracture.  The water injection was ongoing 

for more than six years and likely produced a high-permeability damage zone that has 

been intersected by the newer CO2 fracture. We speculate that this has produced a 

relatively high permeability zone in the region between and surrounding the two ideal 

fracture locations.  Both the conductivity and Vp change sections (Figure 5c and 5b) show 

an increase in conductivity and Vp near the OB-C1 and OB-C2 wells. This is caused by 

an increase in water saturation, as shown in the relogging of the wells in January 2001.  

Water moving outward and away from the high permeability injection zone as CO2 is 

injected causes a “rind” of increased Sw surrounding the volume affected by CO2.  The 

volume of rock affected by CO2 injection will have reduced water content as either CO2 

fills the pore space or oil absorbs CO2 and swells, expelling water.  This volume will 

have a surrounding “rind” of increased water saturation. 

 

The algorithm (Jackson and Tweeton, 1996) used to produce the velocity tomograms 

shown in Figure 5 allows setting a constant velocity anisotropy and a constant dip of the 

anisotropy symmetry axis for the entire cross section.  In a series of tomographic 

inversions, values of the horizontal/vertical velocity and the dip of the symmetry axis 
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were varied between 0.9 and 1.1 and –10 to +10 degrees, respectively.  The final values 

of 1.05 and 7 degrees from vertical (respectively) used in Figure 5 produced the flattest 
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Figure 6.  Travel time residual (observed – calculated) vs. ray angle from horizontal.  

Panel (a):  homogeneous halfspace starting model with no anisotropy or dip of the 

velocity field.  Panel (b): homogeneous halfspace starting model with Vhorizontal/Vvertical = 

1.05 and symmetry axis 7 degrees from vertical. 

travel-time misfit-versus-ray angle scatter plot with the minimum RMS data misfit.  

Figure 6a shows the travel-time residual plot for a Vp model without anisotropy, and 

Figure 6b shows the residual for the final Vp model shown in Figure 5b.  The horizontal-

to-vertical velocity ratio of 1.05 from the crosswell seismic tomograms compares 

remarkably well with the value of 1.047 from core measurements shown earlier in Figure 
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3.  In addition, the structural dip of the reservoir units in the plane of the crosswell 

experiment is 7 degrees. 

 

The starting models for the Vs inversions were converted from the final Vp sections 

using a Vp/Vs ratio derived from the rock properties model.  The final Vs models were 

differenced to produce the change in Vs section shown in Figure 5a.  The Vs change 

section is much smoother than either the conductivity or Vp change sections.  This results 

partially from the lower frequency content in the shear-wave data.  Shear-wave data were 

acquired using an orbital vibrator source with a center frequency of 500 Hz, whereas the 

compressional wave data were acquired using a piezoelectric source with a center 

frequency of 2,000 Hz. The Vs change section is also smoother because Vs is relatively 

insensitive to changes in water saturation (which have high spatial variability) and more 

sensitive to pressure changes (which have much lower spatial variability).  Even with the 

smoother spatial changes in Vs we see a correlation with Vp and conductivity changes.  In 

particular, the zone along the fault shows a decrease in Vs, lending support to our 

interpretation that pore pressure is increasing along the fault zone. 

 

THE EFFECTS OF GAS ON SEISMIC VELOCITY AND DENSITY 

The goal is to predict changes (∆) in reservoir pressure, fluid saturations, and the 

amount of absorbed CO2 in the oil as the CO2 flood proceeds.  We assume that the 

porosity remains constant over the time of the experiment.  To use the rock-properties 

model to predict changes in reservoir parameters from changes in geophysical 

parameters, we must define certain values for reference parameters with respect to which 
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the changes will be computed.  In particular, reference water saturation (Sw) and porosity 

(φ) of 0.5 and 0.52, respectively, are taken from the averages in the OB-C1 well over the 

reservoir interval prior to CO2 injection.  The reference pore pressure (Ppore) is taken from 

a history-matched flow simulation model at the beginning of CO2 injection.  The 

reference effective pressure (Peff) on the rock frame for seismic velocity calculations is 

calculated from the integrated density log minus Ppore.  We will consider the sensitivity of 

our predictions to values of the reference parameters below. 

 

Both hydrocarbon gas and CO2 in the reservoir affect the seismic velocities through 

three possible mechanisms:   

(1) by directly changing the bulk modulus of the composite fluid in the pore space as 

gas saturation changes (Equation 10). 

(2) By changing the bulk modulus of the oil as the amount of dissolved gas changes.   

(3) By changing the bulk density of the rock.  

  

Equation (11), from Batzle and Wang (1992), gives the maximum amount of gas that 

can dissolve in oil expressed as a gas/oil ratio ( ) as a function of pore pressure 

(P

max
GR

pore), temperature in degrees Celsius (T), oil API gravity (API), and gas gravity (Ggrav):  

 

1.205max 2.03 exp(0.02878 0.00377G grav poreR G P API T = −   (11)   

 

The gas/oil ratio is the volume ratio of liberated gas to remaining oil at atmospheric 

pressure and 15.6o C.  Batzle and Wang (1992) also provide formulas for computing the 
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velocity and density of oils with dissolved gas, which we have used in our calculations.  

An increase in the amount of dissolved gas in the oil, as measured by RG, decreases both 

the bulk modulus and density of the oil. The bulk modulus is reduced more than the 

density, resulting in a decrease in the compressional velocity of the oil.  

 

 

Figure 7. Change in velocity (m/s) as a function of change in effective pressure and 

water saturation at reference values of Sw=0.5, Shcg=0.0, φ = 0.52 and Peff=4.7MPa.  

Panel (a) ∆Vp  (Shcg = 0.0) (b) ∆Vp  (Shcg = 0.02) (c) ∆Vs  (Shcg=0.0).  The oil contains the 

maximum amount of dissolved hydrocarbon gas as a function of pressure for the 

parameters of the rock properties model given in Table 1. 

 

Figures 7a and 7c show the calculated ∆Vp and ∆Vs using oil with the maximum amount 

of dissolved hydrocarbon gas as functions of ∆P and ∆Sw, at a reference point (reservoir 

just prior to CO2 injection) where Sw, Shcg,  φ, and Peff are equal to 0.5, 0.0, 0.52, and 4.7 

(MPa), respectively.   When Shcg is non-zero and free gas exists, the behavior of ∆Vp with 

∆P and ∆Sw changes markedly.  Figure 7b shows ∆Vp for the same reference values as 

Figure 7a, but with Shcg = 0.02.  Equation (11) is used to compute the maximum amount 
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of dissolved gas as a function of pressure.  As Ppore increases above the reference 

pressure,  increases, and we assume that in situ gas will dissolve into the oil up 

to .  As the pressure decreases below the reference pore pressure,  decreases, 

and gas will come out of solution, thereby increasing S

max
GR

max
GR max

GR

hcg above its reference value.  This 

behavior is shown in Figure 8.  At the reference pressure Shcg = 0.02, as Ppore increases (-

∆Peff), gas dissolves in the oil and Shcg decreases until ∆Peff reaches -0.6 MPa, when all of 

the gas has dissolved in the oil.  If Ppore decreases (+∆Peff), gas comes out of the oil and 

Shcg increases.  This increase in Shcg with +∆Peff accounts for the sharp gradients in ∆Vp 

seen in the upper portion of Figure 7a and 7b. 
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Figure 8. Change in Shcg as a function of change in effective pressure for the model 

calculations shown in Figure 12.  Reference Sw=0.5, Shcg=0.02, φ = 0.52 and P=4.7MPa. 
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Although developed for hydrocarbon gas in oil, Equation (11) can be used to predict 

for COmax
GR 2 if the appropriate gas gravity is used.  Chung et al. (1988) present 

experimental results for CO2 solubility in 22 API gravity oil at 66.7o C over a range of 

pressures.  The predicted values of from Equation (11), using Gmax
GR grav=1.51 for CO2, 

are within 1% of the measured values over the range of Ppore found in the Lost Hills 

reservoir, between 800 and 1,500 psi.  Based on this comparison, Equation (11) is 

appropriate for both hydrocarbon gas and CO2.  Data from Chung et al. (1988) also show 

that the amount of CO2 that will dissolve in oil, at the relatively low temperatures and 

pressures in our experiment, is independent of the amount of hydrocarbon gas already 

dissolved in the oil. We will make use of this fact later in our interpretation of the 

observed velocity changes. 

 

The dissolution of gas into oil as Ppore increases produces two opposite effects on the 

composite fluid bulk modulus (Equation (10)) and hence the bulk velocity of the rock.   

An increase in Ppore causes to increase, allowing more gas to dissolve in the oil, 

lowering K

max
GR

oil while at the same time reducing Shcg.  From Equation (10), we see that a 

decrease in Koil and in Shcg acts in opposition on Kfluid.  In addition, an increase in Ppore 

(decrease in Peff) reduces Kdry and Gdry, which reduces the bulk velocity of the rock.  

When Shcg is small, decreasing Shcg to zero increases the bulk velocity of the rock more 

than lowering Koil (by dissolving gas) decreases it.  In contrast, decreasing Ppore increases 

Kdry which, by itself, would increase Vp.  However, this effect is outweighed by the 

decrease in Vp caused by the increase in Shcg as hydrocarbon gas comes out of solution 
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from the oil.  The net effect on Vp is seen in the upper halves of Figure 7a and 7b, where 

Vp decreases as Peff increases (Ppore decreases).  

 

PREDICTING TIME-LAPSE CHANGES IN RESERVOIR PARAMETERS 

Before describing the process we have followed to estimate changes in fluid 

saturations, including in situ fluids and introduced CO2, we acknowledge that the 

multitude of possible interactions between changes in pressure, hydrocarbon gas, and 

CO2, as well as the effects on the oil from dissolved gas components, is too large to be 

uniquely determined from our geophysical measurements.  We propose a procedure that 

makes use of a number of (what we consider to be) reasonable and most probable 

assumptions to estimate the change in CO2 gas/oil ratio, ∆RCO2, and CO2 saturation, 

∆SCO2.  The most critical assumption, supported by field reservoir engineers and 

operations staff (Perri, 2001), is that introduced CO2 will dissolve in oil almost 

immediately after injection.  Thus, we treat changes in the CO2 gas/oil ratio as the 

primary mechanism for velocity reduction after changes in Sw and P have been accounted 

for. 

 

EM data provide an independent estimate of ∆Sw.  Electrical conductivity (σ) is a 

much simpler function of reservoir parameters than is velocity and can be described by 

Archie’s law (Archie, 1942). Assuming φ is constant, ∆σ is only a function of ∆Sw and 

∆σbrine.  Because a water flood had been in effect for over 6 years at the start of CO2 

injection, we assume σbrine has reached equilibrium between injected and native water and 
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does not change.  Therefore, conductivity changes are interpreted solely in terms of water 

saturation changes.  

 

The process of converting the geophysical ∆ images to ∆ reservoir parameters begins 

with predicting ∆Sw between the wells from the ∆σ  image, assuming that φ and σbrine are 

constant.  The predicted ∆Sw is used with the observed ∆Vs and the relation illustrated in 

Figure 7(c) to predict ∆Peff.  The process is illustrated schematically in Figure 9.  At 

 

Figure 9:  Schematic diagram of process of estimating ∆Sw from inverse ∆σ and then 

using the estimated ∆Sw with the observed ∆Vs  to estimate ∆Peff 

 

this point, the predicted ∆Sw and ∆Peff sections have required only the assumption that 

∆σbrine does not change appreciably.  Going beyond this point to use the observed ∆Vp 

with the predicted ∆Sw and ∆P to predict changes in CO2 saturation, along with changes 

in absorbed gases, requires more assumptions and becomes riskier. 

 

The predicted ∆Sw and ∆Peff are used to calculate the ∆Vp that results from ∆Sw and 

∆Peff alone, assuming Shcg=0.  Over the majority of the image plane, ∆Sw is negative, with 
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the exception of small zones in the rind of water saturation which increase (as noted 

earlier).  Predicted ∆Peff is negative over the entire interwell section, thus producing a -

∆Vp.  The residual change in velocity (∆VR) is defined by Equation (12): 

obs calc
R p pV V V∆ = ∆ − ∆  ,      (12) 

where  is the observed change in Vobs
pV∆ p and ∆  is the calculated change in Vcalc

pV p.  

We expect the injected CO2 to decrease Vp in excess of the effects of ∆Sw and ∆Peff by 

dissolving CO2 in oil and possibly producing Sco2 > 0.  Figure 10 schematicly represents 

the process of calculating ∆VR and using this with the rock properties model to estimate 

∆RCO2. 

 

Figure 10: Schematic representation of combination of ∆VR and rock properties model to 

predict ∆RCO2. 

 

On the other hand, a +∆VR can result if the assumption of no in situ hydrocarbon gas, 

Shcg=0, is incorrect.  This effect can be seen by comparing Figure 7a to 7b, where the 

presence of hydrocarbon gas reduces the change in Vp associated with a given ∆Sw and 
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∆P.  As a consequence, a calculated ∆Vp, assuming Shcg = 0 when Shcg > 0, yields a 

calculated ∆Vp that is too large and hence a +∆VR.   However, if in situ hydrocarbon gas 

is present and has been accounted for in the calculation of ∆VR, +∆VR can result if a Ppore 

increase causes hydrocarbon gas to dissolve in the oil , in which case Shcg is reduced. 

 

The OB-C1 log shows the presence of hydrocarbon gas over certain intervals within 

the reservoir.  We noted a strong correlation between depth intervals with a non-zero Shcg 

and +∆VR.   Therefore, a two-step process was used to calculate ∆VR.  The first pass used 

Shcg= 0 as described.  Next, sections of the image with +∆VR were recalculated assuming 

Shcg = 0.02 (the average non-zero Shcg in the reservoir interval).  After the second pass 

calculation of ∆VR, many of the areas that had +∆VR after the first pass calculations 

became negative, as became less negative. calc
pV∆

 

There are thus three regions of the ∆VR section between the wells to interpret: (1) Shcg 

= 0 and ∆VR < 0, (2) Shcg > 0 and ∆VR < 0, and (3) Shcg > 0 and ∆VR > 0.  Regions of the 

crosswell section corresponding to Shcg = 0 and ∆VR < 0 require an assumption about the 

partitioning of effects of free CO2 and CO2 dissolved in oil on -∆VR.  We chose to allow 

the maximum increase in RCO2, as given by Equation (11), for the given ∆Ppore and ∆Sw.  

If the +∆RCO2 does not completely account for the -∆VR, then ∆SCO2 was calculated to 

account for the rest.  For regions where Shcg > 0 and ∆VR < 0, we assumed that the 

+∆Ppore caused by injection would drive as much of the initial Shcg into the oil as possible, 
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followed by the same assumption about the partitioning of the -∆VR between +∆RCO2 and 

∆SCO2 as above.  Regions where Shcg > 0 and ∆VR > 0 were converted to –∆Shcg. 

 

Analysis shows that the oil is fully saturated with hydrocarbon gas at the ambient 

reservoir pressure.  Therefore, we assume that the starting point for CO2 absorption is oil 

with Rhcg at its maximum value for the given Ppore and T.  As noted earlier, RCO2 and Rhcg 

are essentially independent, so that the oil can absorb the amount of hydrocarbon gas and 

CO2 up to their respective , indicated by Equation (11).  Because we lack an 

equation for calculating K

max
GR

oil with two separate dissolved gases, we have assumed that 

Equation (13) is an adequate approximation of the bulk modulus of the oil: 

 

hcg
oil

co
oil

dead
oil

hcgco
oil KKKK ∆+∆+=+ 22      (13) 

 

dead
oilK  is the oil bulk modulus without any gas, 2co

oilK∆  is the difference between  

and the oil bulk modulus with CO

dead
oilK

2 dissolved, and hcg
oilK∆  is the difference between 

and the oil bulk modulus with hydrocarbon gas dissolved. dead
oilK

 

Calculating +∆RCO2 for regions where ∆VR < 0 is a simple linear interpolation 

between observed -∆VR and calculated -∆VR for a range of +∆RCO2.  If RCO2 reaches the 

maximum given by Equation (11), then the remaining observed -∆VR is used in a linear 

interpolation between calculated -∆VR over a range of +∆SCO2 to calculate SCO2. 
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The linear relation between ∆VR and RCO2 is shown by the dotted line (Shcg = 0) in 

Figure 9.  In Figure 9, RCO2 increases from 0 to max
2COR  from test number 1 to 34.  From test 

number 34 to 41, SCO2 increases from 0 to 0.02, simulating the effect of progressively 

adding CO2 that first dissolves in oil.  After max
2COR  is reached, CO2 goes into the gas 

phase.  Figure 9 also illustrates the effects of incorrectly assigning in situ hydrocarbon 

gas saturation.  If Shcg > 0 when Shcg=0.0 is assumed, the estimated RCO2 will be low.   On 

the other hand, if Shcg=0.0 when Shcg > 0 is assumed, the estimated RCO2 will be high.   

The error introduced by an incorrect Shcg of 0.02 is approximately 15%. 

10 20 30 40
Test number

-60

-40

-20

0

20

∆
 V

R
 (m

/s
)

0 20 40 60
CO2 Gas/Oil Ratio (RCO2)

0.02
0 SCO2

Sg (CH4) = 0.0
Sg (CH4) = 0.02

True Rg

 

Est. Rg

Figure 11. ∆VR as a function of RCO2 with and without hydrocarbon gas saturation, solid 

line is Shcg=0.02, dotted line is Shcg=0.0. The presence of Shcg causes ∆VR to be less 

negative than if Shcg=0.0. 
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Using this model, we have assessed the errors caused by incorrect values of the 

reference parameters Sw, φ, and Pref.  The error expressed as a percent of the true value is 

plotted in Figure 10 for the same RCO2 values used in Figure 9.  A 15% perturbation of 

the true reference values was used, which we feel covers the expected variation in these 
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Figure 12.  Error in predicted RCO2 as a percentage of the true value. Reference values of 

porosity (φ), water saturation (Sw) and effective pressure (Pref) are in error by +-15%. 

The 15% range covers the expected variation in these parameters over the inter-well 

section. 
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parameters over the interwell section.  The error response as a function of RCO2 is 

approximately symmetric for positive and negative perturbations in the reference 

parameters used.  The assumed Sw has the largest effect, followed by the assumed 

effective pressure, with the assumed porosity having the smallest effect.  Overall, the 

estimated RCO2 is most sensitive to Shcg, since an error of 0.02 in Shcg causes a comparable 

error of 15% in Sw, but Shcg may vary by more that 0.02. 

 

Figure 11 shows the calculated absolute RCO2 (left side) and RCO2 expressed as a 

percent of max
2COR  (right side) generated from the geophysical parameter changes shown in 

Figure 5, using the two-step process described above.  Effective pressure from a history-

matched flow simulation model and integrated density log at the beginning of CO2 

injection was used as the reference pressure.   The predicted RCO2 never reached max
2COR , so 

no SCO2 was needed to account for remaining -∆VR.  The predicted RCO2 shows a strong 

correlation with the location of perforation intervals (shown as black dots on the green 

CO2 hydro-fracture line) that account for the majority of the injected CO2.  The 

percentage of injected CO2 going into each perforation in the 11-8WR well (Figure 1) is 

plotted in the center of Figure 11 and shows that the upper four perforations account for 

95% of all the CO2.  Almost 50% of the CO2 goes into the uppermost perforation.  The 

location of this perforation corresponds to the large +RCO2 associated with the fault zone 

and region above, indicating loss of substantial CO2 into the upper portions of the 

reservoir.  The second, third, and fourth perforations from the top account for roughly 
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another 45% of injected CO2, with each perforation aligning with a laminar zone of 

 

Figure 13. Predicted CO2/oil ratio (RCO2). Left side shows absolute RCO2, right side 

shows RCO2 as a percent of the maximum value for the given pressure and temperature. 

Major unit boundaries are shown as black sub-horizontal lines, estimated location of the 

previous water injection fracture is shown as a vertical black line, estimated location of 

the CO2 injection fracture is shown as a vertical green line, perforation intervals for CO2 

injection are shown as black dots on top of the CO2 injection fracture, and the mapped 

location of a fault zone is shown as a red diagonal line. 

 33



+RCO2.  The only poor correlation between injected CO2 and predicted +RCO2 occurs 

at the perforation at a depth of 1,850 ft. At this depth, a laminar +RCO2 zone aligns with a 

perforation, but the injectivity log indicates little injected CO2.  A possible explanation 

for this zone of increased CO2 is the down-dip CO2 injector 12-7W.  This injector lies 

along the same hydraulic fracture azimuth as the 11-8WR (Figure 1) and shows 

considerable CO2 injection into the geologic unit that intersects our image plane at 1,850 

ft depth. 

 

The upper section of the fault (left side), where geologic-unit boundaries are offset, 

correlates with an increase in RCO2, whereas the lower section (right side), where no 

displacements are mapped, does not.  This is consistent with an increased permeability 

along portions of the fault that have significant movement compared to portions that do 

not.  We interpret this image as indicating that CO2 from the uppermost perforation is 

moving up dip along the fault zone and leaking into the high-permeability units above. 

 

The image of RCO2 shown in Figure 11 has apparent higher vertical resolution of 

increased CO2 zones compared to the geophysical anomalies shown in Figure 5.  While 

there are zones of -∆Vp associated with the same perforation intervals correlated with 

+RCO2, there are additional areas of -∆Vp above and below that do not correspond to 

+RCO2.  Because Vs is insensitive to the fluid substitutions (Figure 7c), we do not expect 

to see a correlation between ∆Vs and CO2, either in the gas phase or dissolved in oil.  

Electrical conductivity changes will be related to changes in oil saturation through the 

change in Sw; these conductivity changes would also show a correlation to the 
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displacement of water by oil, which may or may not be oil with dissolved CO2 in it. Thus, 

although the ∆σ image (Figure 5) is correlated with the ∆Vp image, it also does not 

correlate with the injection intervals nearly as well as the derived RCO2 image of Figure 

11.  Overall, the RCO2 image has higher correlation with the injection intervals than the 

geophysical-change images and is also more horizontally stratified, as is the permeability 

structure of the formation.  

 

CONCLUSIONS 

We have used a rock-properties model, based on a close packing of spherical grains 

in conjunction with Gassmann’s equation, to simulate the relationships between reservoir 

parameters of the Lost Hills diatomite and seismic compressional and shear velocities.   

A volumetric mixing law models bulk density.  Parameters of the rock-properties model 

are derived by a simultaneous fitting of compressional velocity and density logs, using a 

simplex L1-norm minimization, given the observed porosity and fluid-saturation logs as 

well as measured pressure, temperature, and oil properties.  Although the spherical grain 

model may not ideally represent the microscopic structure of the diatomite, the model 

accurately predicts the bulk seismic velocities and densities as a function of the fluid 

saturations, pressure, and porosity, as measured by log data and measurements made on 

core samples.   

 

Calculations using the derived rock-properties model show that the rock bulk shear 

velocity primarily depends on pressure changes, with the effects of water saturation 

changes on shear velocity being of second order.  Calculations also show that the 
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presence of even a small amount of hydrocarbon gas strongly affects the relationships 

between Vp and the reservoir parameters.  The influence of gas on compressional velocity 

makes it impossible to separate the effects of changes in hydrocarbon gas saturation, CO2 

gas saturation, and the effects on the oil caused by dissolved CO2 on Vp without 

additional independent information.  Crosswell EM data was used to provide estimates of 

changes in electrical conductivity that are directly related to changes in water saturation, 

thus providing an estimate of the change in water saturation that is independent from the 

seismic data.  

 

To predict quantitatively the location and amount of CO2 in the crosswell image 

plane, the change of P-wave velocity is decomposed into the part that can be predicted by 

the estimated changes in water saturation and pressure and the part predictable by a 

change in CO2 content.  The process relies on the assumption that the CO2 will first 

dissolve in the oil and will only enter the gas phase after the oil has absorbed the 

maximum amount of CO2 possible for the in situ pressure and temperature conditions.  

Using this procedure, we have demonstrated that by combining seismically derived 

changes in compressional and shear velocity with EM-derived changes in electrical 

conductivity, estimates of pressure change, water saturation change, and CO2 gas/oil ratio 

can be made in a complex reservoir containing oil, water, hydrocarbon gas, and injected 

CO2.   The resulting predicted CO2 /oil ratio, RCO2, is better correlated with logged unit 

boundaries than are any of the images of changes in geophysical parameters.  The size of 

the predicted CO2-rich zones correlate with the amount of CO2 that enters the formation 

through each perforation.  The predicted ∆RCO2 images indicate that a significant portion 
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of the injected CO2 is filling the upper portions of the section above the intended 

injection interval.  These conclusions are validated by CO2 injectivity measurements 

made in the 11-8WR Well. 

 

While we have tried to produce quantitative estimates of the CO2 in place by 

estimating the CO2/oil ratio, the values of this ratio depend on our assumptions about the 

partitioning of CO2 between oil and gas phases.  In addition, the assumed values of in situ 

hydrocarbon gas affect the estimates of the CO2/oil ratio, so that the absolute values of 

our estimates may be in error.  The main advantage of the approach described in this 

paper is the decoupling of the effects of pressure and water saturation changes from those 

caused by CO2.  This produces the improved spatial correlation between the estimated 

CO2/oil ratio and the CO2 injectivity logs when compared to the geophysical change 

images. 

 

This analysis relies on many assumptions that were required because the project was 

not originally designed to use this methodology.  In future applications, the number of 

assumptions could be substantially reduced by design.  In particular, considerable benefit 

could be drawn from repeat logging of the wells with a full suite of logs.  This would 

provide control points for the ∆P, ∆Sw, ∆Sg, ∆Vp, ∆Vs, and ∆σ, all of which would serve 

to greatly constrain the problem.  Log measurements of the geophysical parameters 

would provide information for better starting models, with constraints on the velocity, 

density, and electrical conductivity at the well locations.  Additionally, measurements of 

SCO2 and the amount of CO2 dissolved in the oil would provide a basis for determining 
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the partitioning of the residual velocity between the two, as well as eliminate the need to 

assume that all of the CO2 dissolves in the oil before CO2 gas is evoked as a mechanism 

of velocity change.   
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TABLES 
 

Table 1: Definition of symbols. 

Parameter Name Symbol Parameter Name Symbol
Dry frame bulk modulus Kdry CO2 bulk modulus KCO2 
Dry frame shear modulus Gdry Composite fluid bulk modulus Kfluid 

Effective dry frame bulk modulus Keff Rock bulk density ρbulk 

Effective dry frame shear modulus Geff Grain density ρgrain 

Saturated rock bulk modulus Ksat Oil density ρoil 

Saturated rock shear modulus Gsat Brine density ρbrine 

Grain bulk modulus Kgrain CO2 density ρCO2 
Grain shear modulus Ggrain Gas correction Gc 

Grain Poisson ratio ν Hydrocarbon gas density ρhcl 
Critical porosity φ0 Rock bulk electrical conductivity σbulk 
Rock porosity φ Brine electrical conductivity σbrine 
Number of grain contacts l Archie porosity exponent m 
Water (brine) saturation Sw Archie saturation exponent n 

Oil saturation So Pore pressure Ppore 

Hydrocarbon gas saturation  Shcg Effective Pressure Peff 
CO2 saturation SCO2 Compressional velocity Vp 
Brine bulk modulus Kbrine Shear velocity Vs 
Oil bulk modulus Koil Gas/Oil ratio Rg 

Hydrocarbon gas bulk modulus Khcg Gas gravity Ggrav 
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Table 2: Rock-properties model parameters by model constituent.  Model parameters 

fixed in the regression of well log data are shown in bold type. Asterisk (*) indicates that 

lithostatic pressure was calculated as a function of depth using the integrated density log, 

and pore pressure was taken as hydrostatic.  Effective Pressure = Lithostatic – 

Hydrostatic Pressure. 

 

Parameter Name Symbol 

Dry 
Frame 

Modulus 

Gassmann's 
Fluid 

Substitution Fluids
Electrical 

Conductivity 
Regression 

Values 

Grain Shear 
Modulus Ggrain x       17.84 (Gpa) 
Grain Poisson 
Ratio ν x       0.107 

Grain Density ρgrain x Dry Rock     2.358 (g/cc) 
# of contacts/grain l x K     3.68 
Effective Pressure Peff x       * 

Critical Porosity φ0 x       0.55 
Pore Pressure Ppore     x   * 
Oil API gravity API     x   21.7 
Gas gravity Ggrav   Fluid K x   0.585 

Brine Salinity S     x   
0.023 

(PPM/106) 
Temperature T     x   42 (C) 
Fluid conductivity σbrine       x 0.23 (S/m) 
Porosity exponent m       x -1.66 
Saturation 
exponent n       x -1.85 
Gas correction Gc   x     0.0068943 
              

*  Litostatic pressure from integrated density logs, Peff = Litho - Hydro static 
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